
Intro. Em. Linux and VLC

Internship Project Part II: Our project on VLC

Second section of my internship project about data transfer

with visible light. During remaining afternoons of second

week we brainstorm about ideas to build. Later we made

research and prepare an 5 minute elevator pitch. My project

is data transfer using RGB LEDs, which I will explain better

later. At Friday of second week everyone presented their

projects and later that day everyone voted for 26 projects to

be build. My project is selected second out of six selected

projects to be build. After projects selected we formed teams

to work with. My team has five members; 4 electronics

engineering major and one computer science major. We spend

remaining time of that day for preparing work plan and buying

hardware for our project. At following paragraphs, first I

will give details about my project and later about work plan.

At the end of the two week our project was able to send text

messages from one computer to another without an error using

visible lights. How ever this system is really slow (40 bits/

sec) due to hardware and the technique we used.

! of !8 48

Intro. Em. Linux and VLC
Components we used for one transceiver at our project is

follows as:

Hardware

• Arduino Uno

• Adafruit TCS34725 RGB color sensor

• Breadboard

• Three 1w LEDs (one red, one green, one blue)

• Lots of jumpers and plane cables

• Three 45o lenses for LEDs

Software

• Arduino IDE

• Text Editor (for writing C/C++ libraries)

• Git

Equipment

• Soldering equipment (We used the ones at AirTies)

• Tape

• Wire cutter

Schematic of our system can be seen at figure 1. Figure 1

includes a legend for cable mapping. Photograph of system we

build can be seen at figure 2. Also lenses can be seen at

figure to, outside of LEDs. Final versions of all codes used

in our project can be found at Appendix A.

! of !9 48

Intro. Em. Linux and VLC

! of !10 48

Fi g u re 1 : Schemat ic o f System

Purple cable: SCL
Grey Cable: SDA
Red Cable: 5V
Black Cable: GND
Striped Cables: LED enables

Fi g u re 2 : Phys ica l System

Intro. Em. Linux and VLC

Currently our system is in proof of a concept stage. It works

on short range (~1.5m maximum tested), vulnerable for changes

at the environment, slow (40bits/sec) and can only send ASCII

text thought serial monitor at Arduino IDE.

Our system sends data char by char in 12 bit packages. We

send data using three deferent channels (red, green and blue

visible light) thus each char takes 4 cycle to send. Before

discussing more detail we should observe the process.

Assuming we have two people using this set Alice (A) and Bob

(B). First Alice sent his message to Arduino A using serial

monitor. Arduino A first encodes incoming char into binary

data, then we apply a simple Hamming code (8-4) to create

parity bits for error correction and create a 12 bit binary

package. After creating package, Arduino A send this packages

to Arduino B using the protocol we created. On receive

Arduino B apply Hamming code for error correction and decode

8 data bits to a char and print it to serial monitor. This

process works on all environments without an error as long as

environment won’t change (increase or decrease at

brightness). Only exception to previous statement is direct

sun light. Our system won’t work on direct sunlight because

sensor won’t work due to light intensity. We always observed

! of !11 48

Intro. Em. Linux and VLC

highest value from the sensor when we test it at outside

under direct sunlight.

Our system has two protocols. One is for calibration, other

one is for data transmission. Next two paragraphs I will

explain our protocols.

Calibration protocol is simply gets environment values for

each combinations for RGB values, by receiving them from

other device. This process should be done for each device

separately. This process starts when device enters

calibration mode. At this mode device gets values for current

environment and determines thresholds for that case. This

process starts with the case all LEDs are LOW continues to

the all LEDs are HIGH, when white light from our LEDs fall

over sensor. Figure 3 shows the colour sequence with the

! of !12 48

Fi g u re 3 : Synchronisat ion sequence

000 100 010 001

110101011111

Intro. Em. Linux and VLC
values. To determine threshold we develop a simple algorithm.

Since the sequence is predetermined we know the order of

colours. Device that is in calibration sequence (receiving

device) first saves current environment values for all LEDs

LOW then waits red LED to pass LOW threshold then constantly

gets environment values until the HIGH LEDs are at maximum

value (values for HIGH LEDs are stopped increasing). When we

get highest values we multiply RGB values with coefficients

to their states (HIGH or LOW) and save them. Then our device

waits; first until HIGH LEDs of previous step pass down of

LOW threshold, second until HIGH LEDs of next step pass up of

LOW threshold. This second wait is same wait as first wait

for red LED. LOW thresholds determined at first step of

calibration sequence, when we get values for all LEDs LOW.

Figure 4 shows the timeline of one step at calibration

sequence. Up to this point I discussed only about receiving

side of Calibration protocol. That is because transmitting

side is too much simple. We named it as Synchronisation

! of !13 48

Wait for
HIGH LEDs to
Pass up OFF

Threshold

Wait for Max
Value o f

HIGH LEDs

Prev ious Step
or

Get Values o f Al l LOW

Save
Threshold
Va lues for
th is Step

Wait for
HIGH LEDs to

Pass Down
OFF Threshold

Next Step
or End of

Ca l ibrat ion
Sequence

Fi g u re 4 : Ca l ibrat ion sequence t imel ine

Intro. Em. Linux and VLC
sequence. Synchronisation sequence follows the pattern at

figure 3. At each step it turns on HIGH LEDs for that step,

waits for initDelay (we set it to 30 ms but it can be changed

easily), then turns off HIGH LEDs, waits for initDelay again

and proceeds to next step. Timeline for synchronisation can

be seen at figure 5.

Transmission protocol we used determines how we send

messages. We send binary data directly, without any

modulation. Using this protocol our devices will always work

synchronously due to feedbacks provided. Transmission

protocol consists two cycles, transmit cycle and receive

cycle. Both cycles are can be seen at figure 6. I will start

with transmit cycle, transmitting device lights green LED and

waits receiving device’s to respond by lighting green LED.

When receiving device light green LED transmitting device

turns off green LED and waits for receiving device to turn

! of !14 48

Turn On
th is s teps

HIGH LEDs

Wait for
in i tDelay
(30ms)

Wait for
in i tDelay
(30ms)

Turn Of f
Al l LEDs

Next Step
Or End

of
Synchronisat ion

Sequence

Prev ious
Step

Or Star t

Fi g u re 5 : Synchronisat ion sequence t imel ine

Intro. Em. Linux and VLC
its green LED off. Upon receiving device’s green LED off,

transmitting device sends first three bits of package by

turning corresponding LEDs on, until blue LED of receiving

device is lit. When that happens transmitting device turns

all LEDs off and waits for blue LED of receiving device to

turn off. Then send next three bits using same process until

the last 3 bits. When last 3 bits send transmitting device

waits red LED instead of blue LED. If transmitting device has

another char to transmit it starts to wait for green LED of

receiving device to first turn on then turn off. Transmitting

device treat this green LED same as the first one, and

continues to sending next package like previous one.

Receiving cycle is the one which controls timeline. Timing at

this cycle is controlled by two parameters fbTime and cycTime

(feedback time and cycle complete time, both 25 ms). Feedback

time states how long LEDs stay HIGH and cycle complete time

states how long receiving device waits before doing

processing. It starts upon receiving request (green LED) from

transmitting cycle, and answers it with I am ready signal

(green LED). Wait for cycTime then gets environment values,

detects 3 bit and save them to a buffer. After receiving

device finishes this step, it turns on and off blue LED (send

me next 3 bit) with according to timing parameters. Receiving

device continues this process until last 3 bits of package is

! of !15 48

Intro. Em. Linux and VLC

! of !16 48

Fi g u re 6 : Transmiss ion protocol t imel ine

Wait

Wait

Rece ive 3 B i t Data

Rece ive 3 B i t Data

Send Next S igna l
(B lue LED)

I am Ready S igna l
(Green LED)

Receiving CycleTransmitt ing Cycle

End Transmiss ion
Protoco l

I f No more Data to
Send

 I f L ast Data Rece ived

i s NULL

Send Request

Send 3 b i t Data
and Wait for B lue HIGH

Wait for Green
LED LOW

Wait for B lue LED
LOW

Wait for B lue LED
LOW

Wait for B lue LED
LOW

Send 3 b i t Data
and Wait for B lue HIGH

Send 3 b i t Data
and Wait for B lue HIGH

Send 3 b i t Data
and Wait for Red HIGH

Wait ing for request or
data f rom ser ia l

moni tor

fbTime

cycTime

fbTime

cycTime

fbTime

cycTime

fbTime

cycTime Wait

Wait

Rece ive 3 B i t Data

Rece ive 3 B i t Data

Send Next S igna l
(B lue LED)

Send Next S igna l
(B lue LED)

Process Rece ived Data
and Send to Ser ia l

Intro. Em. Linux and VLC
received and saved to the buffer. At this point receiving

device turns on red LED (I get the package) instead of blue

one. Then receiving device does error correction and

decoding. After sending received char to serial monitor,

receiving device turns off red LED (Package delivered) turns

on green LED (gives I am ready signal) and continues cycle

from that point until it receives a NULL char. When NULL

received transmission protocol for receiving device ends.

Summarised ASM chart of device, that includes all operations,

can be found at Appendix B.

We were a team with a five members thus we had more than

enough time to build our project. First a two days we spend

our time on research about error coding and visible light

communication; as well as we prepare the hardware. Next three

days we do the coding and testing. At the end of first week

we had an early prototype that works. But this version had

many errors. System was unstable, we observed many errors

during transmission. Also we had a separate code for receiver

and transmitter thus our system can send data on single

direction. Next Monday we start with improving error rate.

First we improved our RGB detection algorithm a little bit

and set a calibration protocol similar to the one we

currently use. These two improvements improved our error rate

! of !17 48

Intro. Em. Linux and VLC
a lot. And to stabilise our system we set the transmission

protocol we currently use, which includes lots of feedbacks.

Next day we combined transmitter and receiver codes into

Master.ino file afterwards we did more testing. Wednesday

morning we start with improving our calibration protocol to

version we currently use and afternoon we continue our

testing. Thursday we prepared presentation about our project,

did more testing (We send long articles from internet) and

looked for a way to send file. Friday we presented our

project to others and listen other presentations.

Even though our prototype works with well (we were able to

send an article with approx. 700 characters from approx. 1m

distance without an error) it is not complete yet. We can add

a driver and an application to send data instead of serial

monitor. This addition will allows us to send non-unicode

chars and files, as well as increase data transfer speed.

Also we can design a custom hardware for this system, which

will increase our data transfer rate by itself and also by

allowing us to use modulation. Last improvement we planed to

do in future is add an autonomous calibration process, which

will protect our system from changes at environment.  

! of !18 48

